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pH-responsive scaffolds generate a pro-healing response
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A principal challenge in wound healing is a lack of cell recruitment, cell infiltration, and vascularization,
which occurs in the absence of temporal and spatial cues. We hypothesized that a scaffold that expands
due to local changes in pH may alter oxygen and nutrient transport and the local cell density, leading to
enhanced cell deposition and survival. In this study, we present a pH-responsive scaffold that increases
oxygen transport, as confirmed by our finite element model analysis, and cell proliferation relative to a

non-responsive scaffold. In vivo, responsive scaffolds induce a pro-healing gene expression profile
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indicative of enhanced angiogenesis, granulation tissue formation, and tissue remodeling. Scaffolds that
stretch in response to their environment may be a hallmark for tissue regeneration.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Skin and soft tissue wounds -arising from diabetic foot ulcers,
pressure ulcers, and venous ulcers- affect 6.5 million patients in the
US at an annual cost of over 25 billion dollars [1]. The pathogenesis
is due to a combination of neuropathies, inflammatory irregular-
ities, and peripheral vascular disease. Chronic wounds exhibit
increased levels of proteases, impairing remodeling and matrix
stability, and hypoxia, impeding immune function and collagen
synthesis [2].

The use of skin substitutes provides a structural support that
enables cell adhesion, infiltration, and growth [3]. Post-
implantation analysis reveals that densely packed, highly meta-
bolic cells (e.g., fibroblasts, endothelial cells, and leukocytes)
become paralyzed and apoptotic in the absence of a vascular
network, resulting in necrosis [4]. A major contributing factor to
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this phenomenon is the rapid consumption of diffusing oxygen and
nutrients, which limits penetration beyond 100 microns. Efforts to
extend cell survival via rapid vascularization led to the fabrication
of scaffolds with microfabricated channels [5,6]. These approaches
focus on re-engineering the architecture of the scaffold but suffer
similar consequences in the absence of anastomosis.

In contrast, stimuli-responsive scaffolds can deform on-demand
in response to changes in a cell's environment. Volumetric swelling
may be advantageous in wound healing because it convects nu-
trients when hypoxia is reached and alters the local cell density
through the uptake of water. The response is coupled to a decline in
pH due to the hydrolysis of ATP and anaerobic glycolysis [7] and an
accumulation of metabolic waste [8]. Materials comprised of
dimethylaminoethyl methacrylate (DMAEMA), having a pKa of 7.5,
swell in response to physiological changes in pH due to the pro-
tonation of its tertiary amine [9] Though DMAEMA is extensively
used in gene delivery [10,11], its use in tissue engineering is limited.

Herein, we synthesized a series of responsive scaffolds, with
varying pH sensitivity, aimed at increasing tissue formation during
the early healing period post-implantation. pH-responsive scaf-
folds exhibited swelling under acidic conditions leading to
increased oxygen penetration and cell infiltration, relative to non-
responsive scaffolds, which was confirmed by finite element
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modeling. pH-responsive scaffolds advanced the formation of
granulation tissue in vivo. The pro-healing response -an increase in
growth factors and cytokines that encourage regeneration over
inflammation- was induced by scaffolds that can sense and respond
mechanically to their environment. pH-responsive scaffolds may
provide a platform for the treatment of chronic wounds.

2. Materials and methods
2.1. Synthesis of pH-sensitive scaffolds

600 pL of a poly(methyl methacrylate) (PMMA) microsphere
suspension (20 wt%, MW 25k, Thermo Fisher) was placed in a
Teflon mold (30 x 10 x 5 mm). After settling, particles were placed
at 50 °C overnight for water evaporation and then at 140 °C for 20 h
for particle sintering. 200 pL of 2-hydroxyethyl methacrylate
(HEMA) and DMAEMA/HEMA solutions (10/90, 20/80, and 30/70,
mol/mol; Acros) with 3 mol% tetraethylene glycol dimethacrylate
(TEGDMA, Fluka) and 1 mol% 2,2-dimethoxy-2-phenylacet
ophoenone (DMPAP, Sigma) were added in the dried PMMA lat-
tice and then placed under UV light (21.7 mW/m?, 365 nm) for 90 s.
After polymerization, gels were immersed in 20 mL of dichloro-
methane (Mallinckrodt Baker) while shaking vigorously on an
orbital shaker for 48 h to remove the PMMA microspheres. The
scaffold was placed in 30 mL of diH,0 and washed for 24 h three
times. Finally, the scaffold was cut to the desired shape using an
8 mm cork borer.

2.2. Equilibrium swelling studies

Equilibrium swelling of HEMA and DMAEMA/HEMA scaffolds
was performed in a 10 mM sodium phosphate buffered medium.
The pH was adjusted using 0.1 N HCI to achieve pH 5.5, 6.5, 7.0, and
7.4. Scaffold strips (30 x 10 x 2.0 mm) were placed into a glass jar
containing 50 mL of buffer on a shaker (150 + 1 rpm) at 37 °C. The
swelling ratio of the scaffolds as a function of pH was calculated by
measuring the mass of the scaffolds at 0, 1, 2, 3, 4, 24, and 48 h by
taking the ratio of the swollen scaffold mass over the initial scaffold
mass.

2.3. Mechanical testing

The elastic modulus of HEMA and DMAEMA/HEMA scaffolds
was measured in 10 mM phosphate buffer at pH 5.5, 6.0, 6.5, 7.0 and
7.4 after fully hydrating for 3 d. Samples were placed on a shaker
(150 + 1 rpm) at 37 °C. Tensile tests of each scaffold strip
(30 x 10 x 2.0 mm) were carried out on an Instron BioPuls 5543
using a 500 N loading cell. Scaffolds were strained to failure at a rate
of 1 mm/min. The Young's modulus was calculated from the initial
40% strain.

2.4. Cell culture

NIH/3T3 mouse fibroblasts (ATCC# CRL-1658) were cultured at
37 °C in humidified air containing 5% carbon dioxide. NIH/3T3
cells were grown in Dulbecco's Modified Eagle's Medium (DMEM,
Life Technologies) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin. Cells were seeded into
the scaffolds by dropping 100 pL of cell suspension at either
1.0 x 10% or 1.0 x 107 cells/mL onto dry scaffolds. The cells were
incubated for 2 h before adding 1 mL of growth medium to each
well and incubating for 5 d.

2.5. Oxygen level and pH change measurements

Oxygen concentration levels in cell-seeded scaffolds (8 x 2 mm)
were quantified using OxyLab pO, pre-calibrated optical fluores-
cence probes (Oxford Optronix) HEMA and DMAEMA/HEMA
scaffolds were treated with fibronectin (50 pg/mL, pH 7.4) and
incubated at room temperature for 1 h in order to allow the
extracellular matrix protein to adsorb onto the scaffolds. Scaffolds
were seeded with 108 or 107 NIH/3T3 fibroblasts and maintained in
a humidified incubator at 37 °C and 5% CO, for 2 h in order to allow
for cellular attachment within the scaffold to occur. Oxygen levels
were quantified at 0, 24, 48, and 72 h. Measurements were taken in
growth media, at the surface and center of the scaffolds for each
sample (triplicates for each condition). The oxygen probe was
placed at the area of interest until pO, readings stabilized. Sensor
response time was 5—10 s, which provided a quasi-real time
measurement of the oxygen environment. The pH change of
growth medium was measured at different incubation times and
cell densities using a pH electrode (PHI 255 pH meter, Beckman
Coulter).

2.6. Preparation of PLG scaffolds

1 mL of a 10 wt% poly(pL-lactide-co-glycolide) (PLG) solution
(50:50 molar ratio, Lactel) in chloroform was mixed with 1.17 g
sieved sucrose particles. 200 pL suspensions were placed on a
25 mm concave glass cover and dried in a fume hood for 4 h until all
solvent was evaporated. The scaffolds were placed into DI water for
12 h to dissolve the sucrose particles. PLG scaffolds were dried at
room temperature for 24 h.

2.7. Cell proliferation under hypoxia

NIH/3T3 cell proliferation on pH-sensitive scaffolds under hyp-
oxia was measured using the Dojindo Cell Counting Kit-8 (Dojindo
Molecular Technologies). HEMA, DMAEMA/HEMA, and PLG scaf-
folds were pre-incubated with 1 mL fibronectin (50 pg/mL, pH 7.4)
for 1 h at 37 °C. NIH/3T3 cells were seeded into the scaffolds by
dropping 100 pL of cell suspension at 1.0 x 106 cells/mL onto the
scaffolds. The cells were incubated at 37 °C under normoxia con-
dition for 2 h. Then 1 mL of growth medium was added to each well,
and the scaffolds were incubated under hypoxia (5% O3, 5% COo,
balance Nj) for 7 d. Cell viabilities on scaffolds were measured at
time points: 1, 3,5, and 7 d.

2.8. Scanning electron microscopy

Scaffolds containing cells fixed with 2.5% v/v glutaraldehyde in
PBS were dehydrated serially in ethanol, critical point dried with
liquid CO; (Auto Samdri 815 Series A, Tousimis), and sputter coated
with Pt/Pd for 2 min at 40 mA (208HR, Cressington Scientific In-
struments). Cells were imaged with SEM (FESEM Ultra55, Zeiss) at a
beam voltage of 5 kV.

2.9. Oxygen simulation studies

A finite difference mathematical model was developed to pre-
dict the oxygen availability in the scaffolds. The 2D model consisted
of a scaffold stretching over time increasing its radius from 0.4 cm
to 0.72 cm as function of A(t) (Equation (2)). These scaffold stretch
values were obtained experimentally by performing in vitro
swelling studies. Oxygen outside the scaffold was assumed to be
constant. Inside the scaffold a diffusion rate D = 2 x 107> cm/s [12],
a consumption rate B = 4 x 10~ mol/cell-s [12], an initial cell
density po = 10° cells/mL and a scaffold height h = 2 mm were
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modeled according to Equations (1) and (3). Results were then
compared with non-responsive controls where the radius was kept
constant at 0.4 cm or 0.72 cm. Simulation plots were generated
using MATLAB®.

2.10. Cell viability

Cell survival after 3 and 6 d was measured using the ala-
marBlue® fluorometric dye (Life Technologies). 500 pL of fresh
growth medium was added to scaffolds. Scaffolds were incubated
for 4 h at 37 °C after adding a 50 uL alamarBlue® reagent. Fluo-
rescence was measured at room temperature on a Gemini XPS
microplate spectrofluorometer (Molecular Devices) using an exci-
tation of 570 nm and an emission of 585 nm.

2.11. In vivo studies

All animal work was approved by the Beth Israel Deaconess
Medical Center's (BIDMC), Institutional Animal Care and Use
Committee (IACUC). Wistar rats were obtained from Charles River
Laboratories and were between 8 and 12 weeks of age and weighed
350—400 g at the beginning of the study period. 24 Rats were
divided into 2 groups for two separate euthanasia time points (7 or
14 d) post-scaffold implantation.

2.12. Animal surgery

Rats were anesthetized using Ketamine (40—80 mg/kg IP) and
Xylazine (5—10 mg/kg IP). The dorsal trunk was shaved and the skin
was prepped for surgery. Four, 1 cm incisions were made on the
dorsum of the rat and a subcutaneous pocket was created. Scaffolds
(8 mm x 2 mm) were then inserted inside the subcutaneous
compartment in randomized locations. Each rat received a sham
subcutaneous pocket (no scaffold), a 100% HEMA scaffold as a
control, a DMAEMA/HEMA (30/70, mol/mol) scaffold, and either a
DMAEMA/HEMA (20/80 or 10/90, mol/mol) scaffold. Incisions were
sutured with 6-0 nylon monofilament suture and the wounds were
covered with a triple antibiotic ointment. After surgery, animals
were housed in individual cages.

2.13. Tissue harvest

Incisions were made around the subcutaneous pockets and
1 cm? sections of skin with the embedded scaffolds were harvested
upon euthanasia. Each tissue section was fixed in formalin, divided,
and either embedded in paraffin or in OCT and frozen.

2.14. Morphologic analysis and immunohistochemistry (IHC)

Hematoxylin and Eosin (H&E): 6 pm paraffin sections were cut
and stained with H&E using standard procedures. CD31 and
Neutrophil (CD177): 6 um OCT embedded frozen sections were
fixed with cold acetone for CD31 staining. 6 pm paraffin embedded
sections were cut and deparaffinized in xylene and rehydrated.
Sections were incubated with Proteinase K solution (Fisher Bio-
reagents) for antigen retrieval for neutrophil staining. Sections
were treated with 3% hydrogen peroxide. Non-serum protein
blocking was followed by incubation overnight with primary an-
tibodies (CD31, R&D Systems or CD177, LSbio). Sections were
incubated with biotinylated secondary antibodies followed by in-
cubation with the substrate in Nova Red or DAB (Vectastain Mouse
Kit; Vectorlabs) and then counterstained with hematoxylin. Mac-
rophages: 6 pm paraffin embedded sections were cut and depar-
affinized in xylene and rehydrated. Sections were incubated with
Proteinase K solution (Fisher Bioreagents) for antigen retrieval.

Standard sequential co-staining methodology was used. Mouse anti
rat CD-68 antibody (AbD Serotec) was used to stain all macro-
phages, anti-TNFa/TNF (LSbio) was used for M1 macrophage
staining and anti-Mannose receptor antibody (CD206, Abcam) was
used for M2 macrophage staining [13]. Alexa Fluor® 594-AffiniPure
Donkey Anti-Mouse IgG and Alexa Fluor® 488-AffiniPure Donkey
Anti-Rabbit IgG (Jackson Immunoresearch) were used as secondary
antibodies. DAPI mounting medium (Life Technologies) was applied
to the slides. Images were taken using Zeiss Imager.A2 microscope
using its Zen® interface.

To confirm specific staining for each primary antibody, an iso-
type control was used. For neutrophil staining, spleen sections were
used as positive controls. All analysis was performed blinded by
two observers. For H&E staining and CD31 IHC analysis, an arbitrary
scale of 1-5 was used to grade the extent and intensity of chro-
mogen present: 1: absence of staining; 2: faint scattered staining;
3: moderate staining; 4: intense staining; 5: very intense staining.
Protein expression was measured in sham subcutaneous pockets
and each of the scaffold embedded skin sections at both euthanasia
time points. Qualitative comparison in protein expression is pre-
sented as a fold change for the scaffold skin compared to sham skin
expression within the same rat. For macrophage IHC analysis, dual-
stained cells were counted per visual field and data are presented as
number of cells/field. At least 4 rats were used for all histological
assays.

2.15. PCR array

Tissues from Sham, HEMA, 10/90, and 30/70 samples were snap
frozen in liquid nitrogen and stored at —80 °C until processing.
Total RNA was isolated using the RNase Microarray Tissue kit
(Qiagen) according to the manufacturer's protocol. Yield and purity
were quantified using a SpectraMax Plus 384 spectrophotometer
(Molecular Devices). cDNA was prepared using 1 ug RNA with the
RT? First Strand kit (Qiagen). Real-time PCR (RT-PCR) was per-
formed on a Rat Wound Healing RT? Profiler PCR Array (SABio-
sciences). Ribosomal protein L13A (Rpl13a) and Lactase
dehydrogenase A (Ldna) were used as housekeeping genes.

3. Results and discussion
3.1. pH-responsive scaffold fabrication and characterization

pH-responsive scaffolds were fabricated from the pH-sensitive
monomer DMAEMA and biocompatible monomer HEMA via pho-
topolymerization at predetermined molar ratios (10/90, 20/80, or
30/70, mol/mol) (Supplementary Fig. S1). A highly uniform porosity
was achieved via particulate leaching of PMMA microparticles [14].
HEMA scaffolds were used as the non-responsive control.

Optical images of HEMA and DMAEMA/HEMA scaffolds are
shown in Fig. 1a. Images of DMAEMA/HEMA scaffolds were also
taken by bright field microscopy to observe swelling induced
changes in pore size (Supplementary Fig. S2). The pore size of the
30/70 scaffold nearly doubled after swelling at pH 6.5 when
compared to the initial non-swollen state. Scanning electron mi-
crographs (SEM) of HEMA and 30/70 scaffolds demonstrated three-
dimensional, interconnected pore structures (Fig. 1b and c).

Scaffold swelling was measured as a function of composition
and pH (Fig. 1d—e, Supplementary Fig. S3a-d). The mass swelling
ratio increased with the density of protonated amine groups in
DMAEMA. The 30/70 scaffold expanded by 80% relative to HEMA at
pH 5.5. Water is convected into DMAEMA/HEMA scaffolds to
minimize electrostatic repulsion between cationic amines. Scaffold
swelling was partially reversible, the 30/70 scaffold decreased by
40% (Supplementary Fig. S3e). We chose a physiological pH range
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Fig. 1. Scaffold characterization. Optical micrograph images of (a) HEMA and pH-sensitive DMAEMA/HEMA scaffolds. Scale bar = 3 mm. SEM images of (b) Non-pH sensitive HEMA
scaffold and (c) pH-sensitive DMAEMA/HEMA (30/70, mol/mol) scaffold. (d) Mass swelling ratio of HEMA (red) and pH-sensitive DMAEMA/HEMA scaffolds at different molar ratios
(10/90 (purple), 20/80 (green), and 30/70 (blue), mol/mol) in pH 5.5 buffer as a function of time. (e) Mass swelling ratios of DMAEMA/HEMA scaffolds (30/70, mol/mol) in pH 5.5
(orange), 6.0 (blue), 6.5 (green), 7.0 (purple), and 7.4 (red) phosphate buffers. (f) Young's moduli of HEMA and pH-sensitive DMAEMA/HEMA scaffolds obtained after a 3 d incubation
in pH 7.4 (red), 7.0 (purple), 6.5 (green), 6.0 (blue), and 5.5 (orange) buffer. The error is the standard deviation of the mean, where n = 5. Statistical significance was calculated using
an unpaired t-test with *p < 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from 5.5 to 7.4; it is known that the extracellular pH can decrease to
6.5 in wound healing and 5.8 in tumor necrosis [15,16].

Swelling may stretch polymer chains, which can alter end-to-
end distances of individual chains and therefore the bulk elastic-
ity of the network [17]. Tensile tests were performed on scaffolds
swollen from pH 5.5 to 7.4. As shown in Fig. 1f, the Young's moduli
of DMAEMA/HEMA scaffolds were higher than HEMA at pH 7.4 but
were comparable at pH 5.5. The Young's moduli of HEMA and 30/70
scaffolds at pH 7.4 were 0.46 + 0.07 and 1.97 + 0.42 MPa, respec-
tively. At pH 5.5, the Young's moduli of 30/70 scaffold dropped to
0.43 + 0.05 MPa. There was no significant difference in the elasticity
of HEMA scaffolds between pH 5.5 and 7.4. Cells grown on sub-
strates with Young's moduli between 0.6 and 2.6 MPa exhibited no
differences in cell growth [18].

3.2. Cellular response and oxygen dynamics

Fibronectin-coated scaffolds were seeded with NIH/3T3 mouse
fibroblasts (1.0 x 10% and 1.0 x 107 cells/mL) and evaluated for
changes in pH and oxygen content (pO-). A fibronectin coating was
used to minimize differences in scaffold composition. The pH of the
growth media decreased after 72 h for both cell densities (Fig. 2a).
Similarly, the oxygen level decreased at the center of the scaffold as
time progressed (Fig. 2b). The 10/90 scaffold had less oxygen than
the 20/80 and 30/70 scaffolds; HEMA scaffolds had the lowest pO,
values. Fig. 2c and d show fluorescence micrographs of cells after
3 d of culture on HEMA and 30/70 scaffolds, respectively. Cells
homogeneously grew throughout the responsive scaffolds but were
clustered on the HEMA scaffold. This was consistent with the in-
crease in cell number over a 3 d period on the responsive scaffolds
(Fig. 2e). In contrast, the number of cells declined on HEMA scaf-
folds over the same period.

Molecular oxygen is essential for intracellular processes;
biosynthesis, migration, and transport require energy supplied by

the coenzyme adenosine-triphosphate (ATP), which is synthesized
by mitochondrial oxidative phosphorylation [19]. During the in-
flammatory phase of wound healing, NADPH-linked oxygenase
produces oxidants by consuming high amounts of oxygen, which
are needed to prevent infection [20]. Oxygen is also needed for
collagen synthesis; the hydroxylation of proline and lysine in pro-
collagen is necessary to form stable triple helices [21]. Thus, suc-
cessful wound healing can only occur in the presence oxygen,
which is more readily available within the pH-responsive scaffolds.

In an effort to distinguish the contribution from oxygen and
scaffold stretching, cells were grown on PLG, HEMA, 10/90 and 30/70
scaffolds under hypoxic conditions (Fig. 2f). We included PLG in this
study as it is widely used in tissue engineering; it does not swell in
response to pH but can degrade by hydrolysis [22]. The HEMA and
DMAEMA/HEMA scaffold compositions are non-degradable over the
course of our study. At day 3, no significant differences were
observed between the 30/70 and HEMA scaffolds; PLG scaffolds,
however, suffered a decline in number of cells. The increased oxygen
availability of 30/70 scaffolds cultured at 21% O accounted for a 30%
increase in cell number on day 3 relative to the HEMA (Fig. 2e). By
day 7, the 30/70 scaffold demonstrated a 48% and 76% increase in cell
number compared to HEMA and PLG under hypoxia, respectively.
Cyclic or constant tensile strain can induce cell signal transduction
in vitro [23] and in vivo [24], respectively. Thus, scaffold stretching
was able to induce cell growth at low oxygen conditions.

3.3. Modeling oxygen concentration in stretched scaffolds

To further evaluate oxygen availability in our scaffolds as a
function of swelling, we developed a finite element model simu-
lating the oxygen concentration as a function of distance from the
center to the exterior of the scaffold. The time-dependent oxygen
concentration is equal to the diffusion of oxygen into the scaffold
minus the rate of consumption:
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crographs of NIH/3T3 cells seeded on (c) HEMA and (d) pH-sensitive DMAEMA/HEMA scaffolds after 72 h, stained with the Live/Dead assay. Scale bar = 100 pum. (e) Normalized cell
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conditions (5% 0,.107 NIH/3T3 cells were seeded initially (b—f)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

oxygen consumption rate per cell, p is the cell density, h is the
ac(r,t) b <62 cro 1 6C> _ go(t) scaffold width, and A(t) is the uniform scaffold stretch. The scaffold

ot ar2 T or (1) stretch A is described by A(t) = r(t)/ro. Thus, ro is a moving boundary
that allows the scaffold to grow into the surrounding medium. The
swelling of the hydrogel (Fig. 3a), which was fit to experimental

where C(r,t) is the oxygen concentration, t is time, D is the diffusion . . ; : 5 :
(rt) Ve observations (Fig. 1e), is described by the following equation:

coefficient of oxygen in tissue, r is the radius of the scaffold, B is the
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A =1+ (Af - 1) (1 - e*°~“f) 2)

where t is in hours. The cell density is dependent on the volume; it
decreases as the scaffold swells. The cell density is then defined:

n

" P

(3)

If we set the initial oxygen concentration throughout the scaf-
fold equal to the external medium, the flux at the center of the
scaffold equal to zero, and the oxygen concentration at the pe-
riphery constant due to mixing, then the oxygen concentration at
the center of the scaffold will decrease as time progresses. In the
absence of cell proliferation, the oxygen profile will reach a balance
between oxygen diffusing in and oxygen being consumed. A
necrotic region is then defined by a distance from the center of the
scaffold where the oxygen concentration cannot support cell
growth. For non-responsive scaffolds (Ar = 1), the necrotic region
increased from 0.06 to 0.40 cm as the half-width increased from
0.40 to 0.72 cm (Fig. 3c—d). In contrast, growth of the necrotic
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region was halted (at x = 0.10 cm) as the 30/70 scaffold (Af = 1.8)
expanded from 0.4 to 0.72 cm (Fig. 3b). The area of the necrotic
region is 1600% larger in the non-responsive scaffold relative to the
pH-responsive scaffold. This substantial change in the oxygen
profile across the 30/70 scaffold is in part responsible for the
increased cell viability.

3.4. Determining the biological response of pH-sensing scaffolds
in vivo

Responsive scaffolds were implanted subcutaneously in rats for
a period of 7 and 14 d. This initial animal model was chosen to
demonstrate differences in cell infiltration, neovascularization, and
immune response. Qualitatively, pH-responsive scaffolds visualized
after explantation showed the highest level of cell infiltration
(Supplementary Fig. S4). As seen in the sham wounds, little to no
inflammation and tissue remodeling was observed. We observed a
significant increase in granulation tissue after 7 and 14 d in the 30/
70 scaffold relative to Sham (Fig. 4a,c, Supplementary Fig. S5). An
increased cellular in-growth into scaffolds was anticipated given
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Fig. 3. Mathematical model of scaffold oxygen concentration. (a) Scaffold swelling as a function of time (1) approximated given data for 30/70 scaffold, (b) Oxygen concentration
after 48 h in a responsive scaffold that swells from r = 0.4 cm—0.72 cm (A = 1.8, similar to 30/70 DMAEMA/HEMA scaffold). (c) and (d) show the oxygen concentration for a non-
responsive scaffold (A = 1) with radius (c) ro = 0.4 cm and (d) ro = 0.72 cm. The color legend (b—d) indicates the oxygen concentration; the dark blue region is necrotic. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the superior oxygen permeability and mechanical stretching of 30/
70 scaffolds. In fact, all 30/70 scaffolds elicited profound tissue
formation largely in the absence of significant wounding. Implan-
ted scaffolds were also assessed for vascularization by immuno-
staining for cluster of differentiation 31 (CD31), present in
endothelial cell intercellular junctions (Fig. 4b, Supplementary
Fig. S7). The 10/90 and 30/70 conditions exhibited the highest
expression of CD31 after implantation; however, these differences
were not pronounced (Fig. 4d). Angiogenesis may be induced by
both hypoxic [25] and mechanical cues [23]. These observations not
only support the present in vitro data of cellular scaffold infiltration

; !
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but are highly promising for a future application in poorly granu-
lating, anergic wound beds.

To further characterize infiltrating cells, tissues were immuno-
stained for macrophages (Fig. 5a) and neutrophils (Supplementary
Fig. S6). Macrophage subtype staining revealed a trend towards a
higher presence of M1 (the pro-inflammatory phenotype) and M2
macrophages (the pro-healing phenotype) in 10/90 and 30/70
scaffolds compared to HEMA (Fig. 5b). The moderate macrophage
response was expected as only a minor tissue injury occurred
during blunt dissection at the site of scaffold implantation. The M1/
M2 ratio did not differ between treatment groups; an increased
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Fig. 4. Cell infiltration quantification. (a) Hematoxylin and eosin (H&E) stained sections were analyzed. Representative images close to scaffold implantation for Sham, HEMA, 10/90,
20/80, and 30/70 groups after 14 d (Mag = 40x). Arrows indicate cell infiltration. (b) CD31 immunostained sections were analyzed for vascularization. Representative positive
staining images of Sham, HEMA, 10/90, 20/80, and 30/70 groups after 14 d (Mag = 40x ). Arrows indicate staining of endothelial cells. Scoring of the H&E stained sections after (c) 7
and 14 d. Scoring of the CD31 immunostained sections after (d) 7 and 14 d. All scores were normalized to the Sham condition. Black, white, light grey, dark grey, and striped bars
correspond to Sham, HEMA, 10/90, 20/80, and 30/70 conditions, respectively. Error bars shown are reported as standard error. Statistical significance was calculated using 2-way
ANOVA analysis with *p < 0.05 and ***p < 0.001. A statistically significant difference in score was also found between the Sham and HEMA condition at 7 and 14 d for the H&E

analysis.
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M1/M2 ratio is a hallmark of abnormal wound healing (Fig. 5¢). As
expected by day 14, neutrophils were absent in all groups. To
confirm the absence of neutrophils, we used a rat spleen section as
a positive control.

3.5. Genetic profiling of scaffold-tissue interactions

The effect of scaffold implantation on gene expression was
evaluated using a Rat Wound Healing PCR Array. The regulation of
inflammatory cytokines, growth factors, cell adhesion markers,
extracellular matrix (ECM) and signal transduction molecules was
examined (Supplementary Fig. S8-S13, Supplementary
Table S1—-S3). We observed that genes were often upregulated in
the 30/70 scaffold relative to Sham and HEMA; data were adjusted
to highlight statistically significant changes compared to the Sham
group (p < 0.05) (Fig. 6a, Supplementary Fig. S14).

In the present study, chemokine (C-X-C motif) ligand 3 (CXCL3)
and Tumor Necrosis Factor alpha (TNFa) were significantly
increased in the 30/70 scaffold relative to HEMA (Fig. 6b and c).
CXCL3 regulates angiogenesis via the recruitment and adhesion of

a M1 Macrophages

leukocytes [26]. The role of TNFa is controversial in wound healing
and depends on concentration, length of exposure, and presence of
other cytokines [27]. TNFa is linked to increased collagen produc-
tion whereas in other reports it is implicated in non-healing
wounds [27]. In contrast, CD40 ligand (CD40l) was significantly
increased in HEMA and 10/90 scaffolds but not in 30/70 scaffolds
(Fig. 6d). CD40l, a member of the TNF family, leads to inflammation
[28], endothelial dysfunction [29], neointimal formation after
vascular injury [30] and ischemia-reperfusion tissue injury [31].
Significant changes in cytokine regulation that support wound
healing were therefore observed in 30/70 scaffolds relative to
HEMA.

Other cytokines, such as Interleukin-6 (IL6), were upregulated in
responsive scaffolds compared to Sham whereas no statistical sig-
nificance was observed between HEMA and Sham (Fig. 6e). IL6 is
credited with regulating leukocyte infiltration, angiogenesis, and
collagen accumulation [32]. Knockout and/or antibody blocking of
IL6 reduced wound healing in mice [32]. An acute increase in in-
flammatory cytokines after injury is the first-step towards normal
wound healing. Chronic inflammation, as observed in diabetes, can
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Fig. 5. Macrophage infiltration. (a) Formalin fixed paraffin embedded 6 pm cross-sections were analyzed for macrophage infiltration. CD-68 was used as a pan-macrophage marker,
TNFa was used for M1 specific macrophage staining and anti-CD206 was used for M2 specific macrophage staining. Representative positive dual stained images of Sham, HEMA, 10/
90, and 30/70 groups after 14 d. Orange-yellow stains indicate dual-stained macrophages. (b) Scoring of the M1 and M2 macrophage immunostained sections after 14 d (c) M1/M2
ratio based on scoring in (b). Dual stained cells were counted per field of view. Black, white, light grey, and striped bars correspond to Sham, HEMA, 10/90, and 30/70 conditions,
respectively. Error bars shown are reported as standard error. Statistical significance was calculated using 1-way ANOVA analysis and unpaired t-test with *p < 0.05. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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lead to an insufficient or dysregulated cytokine response during the In the growth factor category, hepatocyte growth factor (HGF),
inflammatory phase, which impairs wound healing [33,34]. Scaf- heparin binding epidermal growth factor (HBEGF), and vascular
folds that induce an acute cytokine response to injury may conse- endothelial growth factor (VEGF) were significantly increased in

quently promote wound healing. the 30/70 scaffolds relative to Sham while no statistical difference
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was observed between HEMA and Sham (Fig. 6f—g). These growth
factors are essential for cutaneous wound healing and angiogenesis
[35—37].

Integrins (Itg) are important cell adhesion molecules that form
heterodimers and assist in cell—cell interactions and cell-ECM in-
teractions thereby participating in all phases of wound healing
from immune response to remodeling. Itg 5 was significantly
higher in the 30/70 group compared to HEMA (Fig. 6h). Remodeling
by integrins and cytoskeletal proteins have been reported to trigger
leukocyte recruitment, fibroblast migration, proliferation, and
angiogenesis [38—40]. Thus, the 30/70 scaffold may support wound
healing by increasing cell adhesion and migration.

Mitogen-activated protein kinase 3 (MAPK3, ak.a. ERK1),
known to play an important role in the VEGF signaling pathway
[41], is significantly increased in the 30/70 scaffold relative to
HEMA (Fig. 6i). MAPK3 regulates cellular proliferation, differenti-
ation, and cell cycle progression in response to cytokines or growth
factor stimulation [42]. Of the cytoskeleton proteins, alpha smooth
muscle actin (Actin-0.2) and actin-f were significantly increased in
30/70 compared to Sham. This suggests high proliferative and/or
synthetic activity of infiltrating smooth muscle and local cells.

Overall, the data suggest that the 30/70 scaffold leads to a pro-
healing milieu of cytokines and growth factors, which induce signal
transduction that results in significant granulocyte tissue formation
and vascularization relative to HEMA. In contrast, the synthetic
scaffold PLG is observed to have an inflammatory response result-
ing in the formation of a thick fibrous capsule by day 14 [43]. PLG
does not support cell infiltration [44] or cell proliferation (Fig. 2f).
The acidic byproducts present upon degradation may result in an
unfavorable inflammatory response and cytotoxicity [45].

Of note, subcutaneous scaffold implantation in an uninjured
healthy animal does not reflect the cellular responses in a chronic
wound rather; it represents the body's response to the implanted
material. As discussed above, responsive 30/70 scaffolds are su-
perior to HEMA in host tissue immune response to scaffold im-
plantation. Further, we provide compelling evidence that 30/70
scaffold implantation leads to formation of high amounts of
granulating tissue, including macrophage infiltration. Inability to
develop granulation tissue is a hallmark of impaired diabetic
wounds [46]. Enzymatic or surgical debridement is often needed
to stimulate healthy granulation tissue formation. Therefore, a
scaffold such as the 30/70 with its high propensity for attracting
leukocytes and forming granulation tissue is strongly desirable.
Although the DMAEMA/HEMA scaffolds in this study were non-
degradable, future preclinical and/or clinical applications can uti-
lize crosslinkers that degrade by hydrolysis [47]. Local dysregula-
tion of inflammatory signals and a local paucity of acute
inflammatory response to injury is thought to be partially
responsible for the poor healing response, particularly in diabetic
wounds. The 30/70 scaffolds may prove to be dually beneficial as
they induce a predominantly favorable cytokine inflammatory
profile as well as significant mitogenic, angiogenic, and remodel-
ing stimuli.

4. Conclusions

In summary, we have demonstrated that pH-sensitive scaffolds
that swell in response to a decrease in pH encourage wound
healing. Responsive DMAEMA/HEMA scaffolds exhibited increased
granulation tissue in vivo and upregulated factors that promote
tissue regeneration. To date, no scaffold has mimicked the pro-
healing gene profile characteristic of mechanical manipulation
due in part to the body's ability to rapidly equilibrate to stress. The
stretch induced by the responsive scaffold may play a role in
altering the gene expression profile observed in our results.

Scaffolds that respond to environmental changes show potential for
the improved treatment of chronic wounds.
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