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Cell adhesion molecules govern leukocyte-endothelial cell (EC) interactions that are essential in regu-
lating leukocyte recruitment, adhesion, and transmigration in areas of inflammation. In this paper, we
synthesized hydrogel matrices modified with antibodies against vascular cell adhesion molecule-1
(VCAM1) and endothelial leukocyte adhesion molecule-1 (E-Selectin) to mimic leukocyte-EC interac-
tions. Adhesion of human umbilical vein ECs to polyvinyl alcohol (PVA) hydrogels was examined as
a function of the relative antibody ratio (anti-VCAM1:anti-E-Selectin) and substrate elasticity. Variation
of PVA backbone methacrylation was used to affect hydrogel matrix stiffness, ranging from 130 to
720 kPa. Greater EC adhesion was observed on hydrogels presenting 1:1 anti-VCAM1:anti-E-Selectin
than on gels presenting either arginine-glycine-asparagine (RGD) peptide, anti-VCAM1, or anti-E-
Selectin alone. Engineered cell adhesion - based on complementing the EC surface presentation - may
be used to increase the strength of EC-matrix interactions. Hydrogels with tunable and synergistic
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adhesion may be useful in vascular remodeling.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesion is an important regulator of cell proliferation, migra-
tion, apoptosis, and differentiation [1]. Previous research has
demonstrated that adhesion is dependent on matrix chemistry and
stiffness. For example, cell adhesion and migration is influenced by
varying the density of cell adhesion peptides on surfaces [2], and cell
spreading and density is regulated by material stiffness [3—5]. In
addition, matrix stiffness is observed to direct human mesenchymal
stem cell differentiation toward neurogenic, myogenic, or osteo-
genic commitment [6]. Previous reports have tailored adhesion by
adjusting a single parameter. In contrast, biology utilizes multiple
cues to regulate cell behavior.

Leukocyte-EC adhesion is regulated via multiple interactions
between cell adhesion molecules (CAMs), such as vascular cell
adhesion molecule-1 (VCAM1) and endothelial leukocyte adhesion
molecule-1 (E-Selectin), and their binding ligands. Their role in
leukocyte rolling, adhesion, and transmigration has been eluci-
dated [7]. Antibodies that target CAMs have been used to modify
drug delivery vehicles [8] or surfaces [9] to target inflamed ECs and
cancer cells, respectively.

We have recently exploited the use of multiple CAMs that
exhibit synergistic adhesion in targeted drug delivery [10—12].
Increased vehicle-cell binding was achieved at optimal anti-
VCAM1:anti-E-Selectin ratios that complemented cytokine-
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activated EC surface expression. Cytokine-activated CAM expres-
sion is essential in harnessing the immune response; dysfunction of
this response can lead to diseased states, such as atherosclerosis
[13], ischemic cerebrovascular disease [14], cerebral aneurysms
[15], and rheumatoid arthritis [16].

In this paper, we hypothesized that cell adhesion could be
engineered via hydrogel surface chemistry and elasticity. Polyvinyl
alcohol (PVA) was chosen because it is non-degradable, non-
adhesive, and can easily be modified [17]. We mimicked adhesive
interactions between cells via the presentation of antibodies that
bind VCAM1 and E-Selectin on PVA hydrogels. We additionally
investigated the effect of surface elasticity on cell adhesion by
varying the methacrylate content of PVA gels. Understanding how
to engineer cell adhesion is a fundamental problem in the devel-
opment of materials for regenerative medicine.

2. Materials and methods
2.1. Materials

PVA (MW 13-23 KkDa, 88% hydrolyzed), dimethyl sulfoxide (DMSO), 2-
isocyanoethylmethacrylate (2-ICEMA), 2,6-di-tert-butyl-4-methylphenol (DTBMP),
4-aminobutyraldehyde diethyl acetal (4-ABA), hydrochloric acid (HCl), ammonium
hydroxide (NH4OH), N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochlo-
ride (EDC), N-hydroxysulfosuccinimide (sulfo-NHS), 2-(N-morpholino)ethane-
sulfonic acid hydrate (MES), and sodium chloride (NaCl) were purchased from Sigma
Aldrich (St. Louis, MO). Irgacure 2959 was purchased from Ciba Specialty Chemicals
(Basel, Switzerland). Deuterium oxide (D,0) was purchased from Cambridge Isotope
Laboratories (Andover, MA). Hank’s Balanced Salt Solution (HBSS) and phosphate
buffered saline (PBS) were purchased from Invitrogen (Carlsbad, CA).
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2.2. Methacrylated, aminated PVA synthesis

PVA was dissolved in DMSO in a 20% w/v solution at 60 °C [18]. The solution was
purged with Ny(g) for 30 min. 1, 2, 5, or 10 mol% of 2-ICEMA was added dropwise. 1%
DTBMP was added to inhibit polymerization of methacrylates. The reaction was kept
at 60 °C for 4 h. The methacrylated PVA was precipitated in acetone and collected
and dried under vacuum. Table 1 shows the nomenclature used for each PVA
formulation.

Methacrylated PVA was aminated using a method previously described [17,19].
Briefly, a 12% w/v solution of methacrylated PVA was dissolved in water at 40 °C. 4-
ABA was added dropwise to a final concentration of 10 mol% for all formulations. HCI
was then added dropwise to the solution to bring the pH down below 1, and the
reaction was continued for 30 min. The pH was then increased rapidly to 8.0 with
NH4O0H, and the final solution was dialyzed (MWCO 2000) and lyophilized.

H nuclear magnetic resonance (NMR) spectroscopy was performed to confirm
the successful conjugation of methacrylate and amine groups to the PVA backbone.
Specifically, samples were dissolved in D0 and spectra were obtained using a Var-
ian M300 Spectrometer.

2.3. Hydrogel fabrication

Aminated, methacrylated PVA solutions were made at 10—30% w/v in water
with 0.75% Irgacure 2959 photoinitiator. Solutions were exposed to UV light
(21.7 mW/cm?, 365 nm) for 90 s, resulting in hydrogels. Hydrogels were synthesized
either in Teflon molds (10 mm x 1 mm x 30 mm) for use in mechanical studies or in
well plates and then cut to an appropriate size using a cork borer for use in cell
studies.

2.4. Mechanical properties

The Young's moduli of various hydrogel formulations were determined using an
Instron BioPuls machine (Instron, Norwood, MA). Hydrogels (10 mm x 1 mm x 30 mm)
were extended at a rate of 1 mm/min at room temperature immediately after poly-
merization. Swelling properties were also evaluated. Hydrogels were swollen in HBSS
to equilibrium. Mass swelling ratios (Q) were calculated by Q = Ws/Wp, where Ws and
W are the masses of the swollen and dry hydrogels, respectively.

2.5. Cell culture

Human umbilical vein endothelial cells (Lonza, Walkersville, MD) were cultured
in Endothelial Cell Growth Medium-2 (EGM-2; Lonza). ECs were maintained at 37 °C
with 5% CO> in a humidified incubator and grown to confluence before seeding onto
hydrogels or 12 well plates for gene expression studies. All hydrogel formulations
used with cells were 20% w/v solutions of the precursor methacrylated and ami-
nated PVA.

2.6. qRT-PCR

EC expression of E-Selectin and VCAM1 was examined as a function of proin-
flammatory cytokine interleukin-1-alpha (IL-1a.) concentration and incubation time.
Cells were treated with 1-10 ng/mL IL-1a for 2—24 h. RNA was extracted using the
RNeasy Mini Kit (Qiagen, Valencia, CA). Quantitative reverse transcriptase poly-
merase chain reaction (qQRT-PCR) was performed to evaluate the expression of
E-Selectin and VCAM1 under inflammatory conditions. Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as the endogenous control. All primers were
obtained from Applied Biosystems (Carlsbad, CA).

2.7. Covalent surface modification of hydrogels

Primary monoclonal mouse anti-human antibodies (R&D Systems, Minneapolis,
MN) were activated for conjugation to the amine group on synthesized precursor
hydrogels using 2 mM EDC and 5 mM sulfo-NHS in 50 mM MES buffer (pH 6.0, 0.5 M
NaCl) for 1 h at room temperature [20,21]. An arginine-glycine-asparagine (RGD)-
containing peptide (arginine-glycine-asparagine-serine, Tocris Biosciences, Ellis-
ville, MO), anti-E-Selectin (R&D Systems) antibody only, anti-VCAM1 (R&D Systems)
antibody only, or a 1:1 ratio of anti-VCAM1:anti-E-Selectin were added at 0.5 mg

Table 1
Functionalization of PVA backbone as determined by 'H NMR.
Target Measured Target Measured
methacrylation methacrylation amination amination
(mol%) (mol%) (mol%) (mol%)
PVA-1 1 0.68 10 43
PVA-2 2 1.15 10 4.6
PVA-5 5 1.73 10 4.6
PVA-10 10 3.41 10 4.4

antibody/g amine group on the PVA backbone to the EDC/sulfo-NHS solution [22].
Hydrogels were added to the solution and allowed to react at 4 °C overnight. Gels
were rinsed with PBS before use to remove excess reactants.

2.8. Cell staining

ECs were activated for 6 h with 5 ng/mL IL-1¢ and then seeded onto PVA-2 gels
(20% w/v). After a 24 h incubation, cells were fixed in cold acetone for 5 min
at —20 °C. Nuclear and F-actin stains were performed by concurrent addition
of 0.2 pg/mL 4',6-diamidino-2-phenylindole dihydrochloride (DAPI; Millipore,
Billerica, MA) and 0.33 uM Alexa Fluor 546 phalloidin (Invitrogen) to cells for 1 h at
room temperature. Fluorescent images were acquired using confocal microscopy
(Zeiss LSM 510 META).

2.9. Centrifugation assay

Adhesion of cells onto hydrogels was assessed using a centrifugation assay
adapted from previously described methods [23—25]. Gels were seeded with
0.5 x 10° activated ECs per gel for 24 h. Gels undergoing centrifugation were placed
in 24 well plates filled completely with media in order to avoid the potential dele-
terious effects of air bubbles on cell retention. Plates were sealed with Titer-Top Plate
Sealant (Electron Microscopy Sciences, Hatfield, PA), inverted, and centrifuged at
300x g for 10 min at 4 °C. Hydrogels in plates of identical set-up that were inverted
at 4 °C but not centrifuged were used as controls for all conditions. Following
centrifugation or inversion, cells were rinsed once with PBS and trypsinized. A Z2
Coulter counter (Beckman Coulter, Brea, CA) was used to determine the number of
cells adhered to gels after either centrifugation or inversion. A cell retention ratio
was calculated as the total number of cells remaining after centrifugation divided by
the number of cells retained after inversion. Statistical significance between samples
was determined by 2-way ANOVA analysis.

3. Results

In this report, we investigated cell adhesion as a function of
surface stiffness and chemistry. We synthesized PVA hydrogels
with increasing percentages of methacrylation. This generated
a series of hydrogels with differing mechanical properties. Meth-
acrylated PVA was functionalized with an amine moiety for
subsequent conjugation of antibodies. PVA hydrogels presenting
three ratios of antibodies, either 1:0, 1:1, or 0:1 anti-VCAM1:anti-E-
Selectin, were used to study cell adhesion strength. EC binding to
functionalized PVA hydrogels was quantified using a centrifugation
assay and compared to unmodified, aminated PVA and RGD-
modified PVA.

3.1. Methacrylated, aminated PVA synthesis

Fig. 1 depicts the chemical reaction scheme for synthesizing
methacrylated, aminated PVA. Representative 'H NMR spectra for
methacrylated and aminated PVA are shown in Fig. 2. PVA desig-
nated with 1, 2, 5, and 10 refer to 1, 2, 5, and 10% methacrylation,
respectively. Peaks at chemical shifts of 5.6—6 ppm (vinyl) and
2.8 ppm (amine) confirm successful methacrylation and amination,
respectively. Table 1 describes the efficiency of methacrylation and
amination for the four PVA formulations. This is calculated from the
ratio of vinyl or amine peaks to the —CH and —CH; groups in the
NMR spectra as determined by the area under the curve (AUC).

3.2. Characterization of mechanical properties

The concentration of methacrylate groups was altered to vary
the elastic and swelling properties of synthesized gels. Crosslinking
occurs with the formation of poly (methacrylate) chains that
connect two or more PVA chains. The distance between crosslinks
depends on the degree of substitution of the PVA chain. Young’s
moduli varied between 130 and 720 kPa for gels synthesized from
a 10% w|v PVA-1 polymer solution and 30% w/v PVA-10 polymer
solution, respectively (Fig. 3A). Young’'s moduli increased with
increasing percentage of methacrylation or weight percent of PVA
in polymer solutions. Mass swelling ratios reflected the extent of
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Fig. 1. Reaction scheme for methacrylation (1) and amination (2) of polyvinyl alcohol.

crosslinking of the gels (Fig. 3B); swelling ratios increased as the
amount of methacrylate groups or weight percent of PVA
decreased.

3.3. Endothelial cell adhesion to antibody-modified hydrogels

ECs temporally upregulate VCAM1 and E-Selectin in well-
characterized patterns. We confirmed increased expression of
VCAMT1 and E-Selectin in ECs exposed to 1, 5, or 10 ng/mL IL-1¢. for
2, 6, or 24 h (Supplementary Fig. S1). The results were similar to
documented reports of cytokine-activated EC expression [26],
including our previous publication that correlated gene expression
with surface CAM presentation [10]. EC stimulation with 5 ng/ml IL-
1a for 6 h resulted in the highest upregulation of both E-Selectin
and VCAM1. ECs were activated to maximize cell surface expression
prior to being seeded on functionalized PVA hydrogels.

The relative cell adhesion abilities of PVA hydrogels with
varying mechanical and chemical properties were investigated.
Hydrogels (20% w/v) exhibiting sequentially increasing Young’s
moduli and decreasing mass swelling ratios were prepared from
PVA-2, PVA-5, and PVA-10 solutions. Adhesion onto PVA-1 hydro-
gels was not evaluated due to the fragility of these hydrogels upon
handling. Cell adhesion onto hydrogels modified with one of three
ratios of anti-VCAM1:anti-E-Selectin was tested and compared to
that on unmodified, aminated PVA and RGD-modified PVA. Acti-
vated ECs were seeded onto hydrogels for 24 h. More ECs adhered
to functionalized PVA hydrogels than unmodified, aminated PVA

hydrogels (Fig. 4). Gels modified with a 1:1 ratio of anti-
VCAM1:anti-E-Selectin had the highest cell density on their
surface 24 h post- seeding (2 x 10° cells/cm?). Surface cell densities
(1 x 10° cells/cm?) were comparable between gels presenting RGD,
anti-E-Selectin, or anti-VCAM1. Surface cell spreading was not
observed on unmodified, aminated PVA hydrogels; cell spreading
was qualitatively lower on hydrogels modified with anti-VCAM1
than on hydrogels modified with RGD, anti-E-Selectin, or 1:1
anti-VCAM1:anti-E-Selectin (Supplementary Fig. S2).

Strength of cell adhesion onto hydrogel surfaces was examined
via the centrifugation assay. We determined the cell retention ratio
by dividing the number of cells adhered after gel centrifugation at
300x g for 10 min by the number of cells adhered after gel inver-
sion (1x g) for 10 min. Cell adhesion onto PVA hydrogels modified
with 1:1 ratio of anti-VCAM1:anti-E-Selectin was higher than on
unmodified hydrogels and those modified with RGD, anti-E-
Selectin, or anti-VCAM1. No significant differences in adhesion
onto PVA hydrogels with varying mechanical properties (Young’s
moduli ranging from 170 to 450 kPa) were identified. However,
differences in adhesion between the antibody-functionalized
hydrogels were most pronounced on hydrogels with greater stiff-
ness (PVA-10 vs. PVA-2) (Fig. 5).

4. Discussion

We have synthesized a series of PVA hydrogels with different
mechanical and chemical properties. We modified hydrogels with
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Fig. 2. 'H NMR spectrum of methacrylated, aminated PVA-1, 2, 5, and 10. Successful backbone modification is verified by vinyl peaks at 5.6 and 6 ppm as well as an amine peak at

2.8 ppm.

either antibodies against cell adhesion molecules upregulated on
inflamed endothelium or RGD, a peptide that binds the aspq
integrin domain [27]. Our interest in cell adhesion molecules
derives from the fact that these molecules are regulated by
cytokine-activation in a temporal and reproducible manner [26]
and are localized within lipid rafts on the cell surface [28].
Mimicking cell—cell interactions by modifying hydrogels with
antibodies against cell adhesion molecules may allow for the
engineering of the strength of cell adhesion onto polymeric
materials.

Cell adhesion molecules participate in leukocyte-EC interactions
while integrins mediate cell-matrix interactions. RGD signaling
involves the FAK pathway [29] whereas VCAM1 and E-Selectin
signaling are mediated by the Rac pathway [30] and activation of
the ERK1/2 pathway [31], respectively. Rac and ERK1/2 are down-
stream of FAK; these pathways regulate various cellular processes,
including adhesion, migration, and actin polymerization [32]. Thus,
directing adhesion through cell adhesion molecules is similar to the
use of RGD. However, our approach is unique because we can tune
adhesion based on the molecular density and organization of
VCAM1 and E-Selectin.

The mechanical properties of our synthesized PVA hydrogels
ranged from 130 to 720 kPa. This range reflects the Young’s moduli
exhibited by soft tissues, including thoracic aorta and femoral
arteries (126—433 kPa [33]), and articular cartilage (500—1000 kPa
[34]). Our hydrogels were stiffer than collagen (0.1-0.4 kPa [35])
and conventional alginate hydrogels (13—45 kPa, 0.21 g/mL calcium
sulfate (CaS0O4) [36]) but were softer than hydroxyethyl methacrylate

(HEMA) gels (1600 kPa, 3 mol% tetraethylene glycol dimethacrylate
(TEGDMA) [37]). Additionally, the mechanical properties of our gels
fell within the range of previously described methacrylated PVA
hydrogels, which span from 55 to 838 kPa [17,18,38]. Cell adhesion
was not significantly altered within the range of Young’'s moduli
examined in this study (Fig. 5). However, cell adhesion has been
shown to be affected by stiffness across a larger range: greater cell
spreading and adhesion was found on polyacrylamide gels when
moduli increased from 5 to 70 kPa [3], on poly(L-lysine)/hyaluronan
films (3—400 kPa) with moduli greater than 300 kPa [4], and on
polyelectrolyte films (0.15—150 MPa) of 150 MPa [5].

Notably, synergistic binding onto PVA hydrogels presenting
both anti-VCAM1 and anti-E-Selectin was observed. Synergy may
be defined as two antibodies that function together to produce
a result not independently obtainable. We observed synergistic
binding between IL-1a activated ECs and liposomes that presented
an optimal ratio of antibodies to CAMs, a 1:1 ratio of anti-
VCAM1:anti-E-Selectin [10]. Liposome binding was inhibited by
disrupting lipid raft formation and blocking of either CAM [12]. This
previous work suggested that cell surface density and organization
is important in cell-material interactions. In the present study,
synergistic binding was observed on PVA hydrogels presenting 1:1
anti-VCAM1:anti-E-Selectin. Synergy was demonstrated by the
increased relative retention of cells on gels presenting 1:1 anti-
VCAM1:anti-E-Selectin versus PVA hydrogels presenting anti-
VCAMT1 or anti-E-Selectin alone.

All hydrogels used for cell adhesion studies had similar antibody
surface densities. Antibodies were conjugated onto aminated PVA
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(A) and mass swelling ratio (B) of PVA hydrogels is dependent on the degree of
methacrylation and the weight percent of PVA. Error bars reported are standard error.

hydrogels (as determined by 'H NMR, Table 1) using carbodiimide
chemistry. Our previous work has shown that this chemistry results
in nonpreferential conjugation of antibodies to surfaces at 70%
efficiency; the molecular density was confirmed by flow cytometry

Unmaodified

Fig. 4. Confocal microscopy images of activated ECs (5 ng/mL IL-1a treatment for 6 h) seeded onto PVA-2 hydrogels (20% w,

E-Selectin

[11]. We estimate that our conjugation confers a density of 700
molecules/um? based on the number of surface amine groups
available for antibody conjugation and the conjugation efficiency.
This is comparable to the 20-200,000 molecules/um? modification
density reported in previous studies on RGD-modified hydrogel
surfaces [2,39].

Strength of cell adhesion onto hydrogel surfaces was
measured by a centrifugation assay where we compared the
number of cells that remained adhered after centrifugation at
300x g relative to inversion, 1x g. This force is equal to or greater
than that used in previous analyses of cell adhesion strength
[2,23,24]. The PVA hydrogels modified with 1:1 anti-VCAM1:anti-
E-Selectin strongly adhered ECs; a 0.9 cell retention ratio was
observed. In comparison, the previously studied systems that
have most effectively adhered cells have shown lower cell
retention. For example, RGD-modified interpenetrating networks
composed of poly(acrylamide-co-ethylene glycol/acrylic acid)
have exhibited a cell retention ratio of 0.6 for rat calvarial oste-
oblast cells centrifuged at 57x g [24] and dinitrophenol func-
tionalized acrylamide surfaces have demonstrated a 0.8 cell
retention ratio for rat basophilic leukemia cells centrifuged at
300x g [23]. The 1:1 anti-VCAM1:anti-E-Selectin PVA hydrogels
presented here thus enable stronger binding than functionalized
materials reported in the literature and demonstrate that
hydrogel chemistry that mimics at least two types of cell—cell
interactions can facilitate stronger cell adhesion than that
which resembles cell-matrix interactions.

Presentation of either RGD, anti-VCAM1 or anti-E-Selectin
alone resulted in similar EC adhesion (Fig. 5). The dissociation
constant of RGD-integrin binding has been shown to be approxi-
mately 1074-10"® M depending on the length of the peptide
evaluated [40] whereas the disassociation constant of antibody-
antigen binding is 10~° M [41]. The differences in the disassocia-
tion constants did not correlate with overall EC adhesion; this is
most likely because we are measuring several interactions and not
a single interaction. Since anti-VCAM1 and anti-E-Selectin pre-
senting PVA hydrogels had similar binding to RGD-modified
surfaces, we concluded that the stronger adhesion observed with
1:1 anti-VCAM1:anti-E-Selectin is due to the synergy between
anti-VCAM1 and anti-E-Selectin.

PVA hydrogels are non-cytotoxic, can conform to any geometry,
and can be photopolymerized in situ on short time scales [17,42].
These qualities make PVA suitable as a vascular embolic agent. In
comparison to ionically crosslinked alginate hydrogels that have
been investigated for use in endovascular embolization [43,44],
functionalized PVA hydrogels can not only adhere to ECs but also be
tuned to match vascular mechanical properties. Future work will
evaluate functionalized PVA hydrogels in vascular remodeling
applications.

1:1 anti-VCAM1:

VCAM1 anti-E-Selectin

w/v PVA) for 24 h and stained with F-actin (red) and

nuclear stains (blue). Scale bar is 50 um. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Retention of ECs stimulated with IL-1a (5 ng/mL for 6 h) seeded onto antibody-modified hydrogels. All PVA hydrogels tested were synthesized from 20% w/v PVA solutions.
Cell retention ratio is defined as ratio of cells remaining on gels after centrifugation at 300x g divided by cells retained on non-centrifuged samples. Error bars are reported as
standard error. Statistical significance was calculated using a 2-way ANOVA analysis with *p < 0.05, **p < 0.01, and ***p < 0.001.

5. Conclusions

We have synthesized photopolymerizable, mechanically
tunable, functionalized PVA hydrogels. PVA hydrogels presenting
a 1:1 anti-VCAM1:anti-E-Selectin ratio exhibited strong, synergistic
adhesion to ECs. These functionalized hydrogels may serve as ideal
candidates for tissue engineering applications.
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